Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Omar bin Shawkataly, ${ }^{\text {a }}$ * Shahinoor Dulal Islam, ${ }^{\text {a }}$ Hoong-Kun Fun ${ }^{\text {b }}$ and Claude Didierjean ${ }^{\text {c }}$

${ }^{\text {a }}$ Chemical Sciences Programme, Centre for Distance Education, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, ${ }^{\text {b }}$ X-Ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ${ }^{\text {c }}$ Laboratoire de Cristallographie et Modélisation des Matériaux Minéraux et Biologiques (LCM3B), UMR No. 7036, Université Henri Poincaré, Nancy I, Faculté des Sciences, BP 239, 54506 Vandoeuvre lès Nancy Cedex, France

Correspondence e-mail: omarsa@usm.my

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.038$
$w R$ factor $=0.106$
Data-to-parameter ratio $=20.4$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
[1,3-Bis(diphenylphosphino)propane]tetracarbonylchromium(0)

In the title molecule, $\left[\mathrm{Cr}\left(\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{P}_{2}\right)(\mathrm{CO})_{4}\right]$, the Cr atom is octahedrally coordinated by the four carbonyl ligands and a bidentate phosphine ligand, which is bonded as a chelate in a cis position. The average $\mathrm{Cr}-\mathrm{P}$ and $\mathrm{Cr}-\mathrm{C}$ bond lengths are 2.3770 (5) and 1.865 (2) Å, respectively.

Comment

It is generally believed that the metal (M) to carbon monoxide bond involves both $\mathrm{OC}-M \sigma$-bonding and $M-\mathrm{CO} \pi$-backbonding. In view of this phenomenon, the bonding characteristics of metal carbonyls with a phosphine ligand in phosphine-substituted metal carbonyls are of interest. A search of the Cambridge Structural Database (Version 5.27; Allen, 2002) revealed only 21 complexes of group VI metal carbonyls with a 3-carbon backbone bidentate phosphine. However, there were no examples of chromium carbonyl complexes. Previously, we reported several crystal structures of phosphine-substituted group VI metal carbonyls (Shawkataly et al., 1996, 1997). We present here the crystal structure of the title compound, (I).

(I)

The title molecule has an expected octahedral geometry (Fig. 1). The $\mathrm{Cr}-\mathrm{C}$ bond lengths of the cis carbonyl ligands (with respect to the P atom) are slightly longer than those for the trans carbonyl group (Table 1). This trend was also observed in $\mathrm{Cr}\left[\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{PPh}_{2}\right](\mathrm{CO})_{4}$ (Bennett et al., 1971) and $\mathrm{Cr}\left[\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{PPh}_{2}\right](\mathrm{CO})_{4}$ (Ueng \& Shih, 1992). The bidentate phosphine bite angle [89.124 (17) ${ }^{\circ}$] is intermediate between that observed in $\mathrm{Cr}\left[\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{PPh}_{2}\right](\mathrm{CO})_{4}$ [83.41 (8) and that in $\mathrm{Cr}\left[\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{PPh}_{2}\right](\mathrm{CO})_{4}$ [93.29 (5) $)^{\circ}$. Comparison of the mean $\mathrm{Cr}-\mathrm{C}$ and $\mathrm{C}-\mathrm{O}$ distances in (I) $[1.865$ (2) and 1.141 (6) \AA, respectively] with those in $\mathrm{Cr}(\mathrm{CO})_{6}[1.909$ (3) and 1.137 (4) \AA, respectively (Whitaker \& Jeffery, 1967); 1.918 (2) and 1.141 (2) A, respectively (Jost et al., 1975)], indicates stronger bonding owing to the back-bonding abilities of the bidentate phosphine. The $\mathrm{Cr}-\mathrm{P}$ bond lengths, with an average value of

Figure 1
View of (I), with the atom numbering scheme and 25% probability displacement ellipsoids. H atoms have been omitted for clarity.
2.3770 (5) \AA, are relatively short in spite of the presence of the bulky phosphine ligand.

Experimental

A mixture of $\mathrm{Cr}(\mathrm{CO})_{6}(234 \mathrm{mg}, 1.064 \mathrm{mmol})$ and $\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{PPh}_{2}$ ($439 \mathrm{mg}, 1.065 \mathrm{mmol}$) was refluxed in a purified mixture of petroleum ether ($373-403 \mathrm{~K}, 30 \mathrm{ml}$) and n-butanol (20 ml) for ca 12 h under dry deoxygenated nitrogen. The solvent was rotary evaporated and the reaction mixture was dissolved in acetone (3 ml) and filtered. Yellow crystals ($454 \mathrm{mg}, 74 \%$ yield) were obtained by slow evaporation of the acetone solution at room temperature. Analysis calculated for $\mathrm{C}_{31} \mathrm{H}_{26} \mathrm{CrO}_{4} \mathrm{P}_{2}$: C 64.58, H 4.42%; found C 64.59, H 4.15\%.

Crystal data

$\left[\mathrm{Cr}\left(\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{P}_{2}\right)(\mathrm{CO})_{4}\right]$
$M_{r}=576.46$
Monoclinic, $P 2_{1} / n$
$a=10.0562$ (1) \AA
$b=20.8494$ (3) A
$c=14.1616$ (2) \AA
$\beta=106.4183$ (7) ${ }^{\circ}$
$V=2848.13(6) \AA^{3}$

Data collection

Siemens SMART CCD
diffractometer
ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)

$$
T_{\min }=0.772, T_{\max }=0.899
$$

$Z=4$

$D_{x}=1.344 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=0.55 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, yellow
$0.4 \times 0.38 \times 0.28 \mathrm{~mm}$

22851 measured reflections 7010 independent reflections 5175 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.055$
$\theta_{\text {max }}=28.3^{\circ}$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0569 P)^{2}\right. \\
& +0.004 P \text {] } \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\text {max }}=0.27 \mathrm{e} \mathrm{~A}^{-3} \\
& \Delta \rho_{\text {min }}=-0.44 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\mathrm{A},{ }^{\circ}\right)$.

$\mathrm{Cr} 1-\mathrm{C} 2$	$1.854(2)$	$\mathrm{Cr} 1-\mathrm{C} 4$	$1.889(2)$
$\mathrm{Cr} 1-\mathrm{C} 1$	$1.8547(19)$	$\mathrm{Cr} 1-\mathrm{P} 2$	$2.3719(5)$
$\mathrm{Cr} 1-\mathrm{C} 3$	$1.863(2)$	$\mathrm{Cr} 1-\mathrm{P} 1$	$2.3821(5)$
$\mathrm{C} 2-\mathrm{Cr} 1-\mathrm{C} 3$	$87.71(10)$	$\mathrm{P} 2-\mathrm{Cr} 1-\mathrm{P} 1$	$89.124(17)$
$\mathrm{C} 2-\mathrm{Cr} 1-\mathrm{C} 4$	$86.29(10)$		

All H atoms were placed at calculated positions and refined using a riding model, with $\mathrm{C}-\mathrm{H}=0.93$ and $0.97 \AA$, respectively, and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: XSCANS (Siemens, 1994); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS86 (Sheldrick, 1985); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

We thank the Malaysian Government and Universiti Sains Malaysia for support via IRPA grant Nos. 09-02-05-0008 and 190-9609-2801.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Bennett, M. J., Cotton, F. A. \& LaPrade, M. D. (1971). Acta Cryst. B27, 18991904.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Jost, A., Rees, B. \& Yelon, W. B. (1975). Acta Cryst. B31, 2649-2658.
Shawkataly, O. b., Saminathan, T., Muniswaran, K., Fun, H.-K. \& Sivakumar, K. (1996). Acta Cryst. C52, 1352-1355.

Shawkataly, O. b., Umathavan, A., Ramalingam, K., Fun, H.-K. \& Ibrahim, A. R. (1997). Acta Cryst. C53, 1543-1545.

Sheldrick, G. M. (1985). Crystallographic Computing 3, edited by G. M. Sheldrick, C. Kruger \& R. Goddard, pp. 175-189. Oxford University Press. Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Siemens (1994). XSCANS. Version 2.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Ueng, C.-H. \& Shih, G.-Y. (1992). Acta Cryst. C48, 988-991.
Whitaker, A. \& Jeffery, J. W. (1967). Acta Cryst. 23, 977-984.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

